Copied to
clipboard

G = C42.191D4order 128 = 27

173rd non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.191D4, C23.534C24, C22.2282- 1+4, C425C4.12C2, (C2×C42).611C22, (C22×C4).144C23, C22.359(C22×D4), (C22×Q8).450C22, C2.85(C22.19C24), C23.83C23.23C2, C2.C42.259C22, C23.78C23.15C2, C23.81C23.26C2, C23.63C23.37C2, C2.27(C22.35C24), C2.42(C23.38C23), (C2×C4×Q8).40C2, (C2×C4).393(C2×D4), (C2×C4).169(C4○D4), (C2×C4⋊C4).361C22, C22.406(C2×C4○D4), (C2×C42.C2).23C2, SmallGroup(128,1366)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.191D4
C1C2C22C23C22×C4C2×C4⋊C4C23.63C23 — C42.191D4
C1C23 — C42.191D4
C1C23 — C42.191D4
C1C23 — C42.191D4

Generators and relations for C42.191D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=c-1 >

Subgroups: 340 in 208 conjugacy classes, 96 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C42.C2, C22×Q8, C425C4, C23.63C23, C23.78C23, C23.81C23, C23.83C23, C2×C4×Q8, C2×C42.C2, C42.191D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2- 1+4, C22.19C24, C23.38C23, C22.35C24, C42.191D4

Smallest permutation representation of C42.191D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 13 107 44)(2 14 108 41)(3 15 105 42)(4 16 106 43)(5 66 93 40)(6 67 94 37)(7 68 95 38)(8 65 96 39)(9 103 48 76)(10 104 45 73)(11 101 46 74)(12 102 47 75)(17 109 56 82)(18 110 53 83)(19 111 54 84)(20 112 55 81)(21 113 52 78)(22 114 49 79)(23 115 50 80)(24 116 51 77)(25 119 64 92)(26 120 61 89)(27 117 62 90)(28 118 63 91)(29 123 60 88)(30 124 57 85)(31 121 58 86)(32 122 59 87)(33 125 71 98)(34 126 72 99)(35 127 69 100)(36 128 70 97)
(1 125 101 96)(2 97 102 7)(3 127 103 94)(4 99 104 5)(6 105 100 76)(8 107 98 74)(9 65 42 33)(10 38 43 70)(11 67 44 35)(12 40 41 72)(13 69 46 37)(14 34 47 66)(15 71 48 39)(16 36 45 68)(17 60 50 27)(18 32 51 61)(19 58 52 25)(20 30 49 63)(21 64 54 31)(22 28 55 57)(23 62 56 29)(24 26 53 59)(73 93 106 126)(75 95 108 128)(77 91 110 124)(78 117 111 88)(79 89 112 122)(80 119 109 86)(81 87 114 120)(82 121 115 92)(83 85 116 118)(84 123 113 90)
(1 86 3 88)(2 85 4 87)(5 114 7 116)(6 113 8 115)(9 27 11 25)(10 26 12 28)(13 31 15 29)(14 30 16 32)(17 35 19 33)(18 34 20 36)(21 39 23 37)(22 38 24 40)(41 57 43 59)(42 60 44 58)(45 61 47 63)(46 64 48 62)(49 68 51 66)(50 67 52 65)(53 72 55 70)(54 71 56 69)(73 89 75 91)(74 92 76 90)(77 93 79 95)(78 96 80 94)(81 97 83 99)(82 100 84 98)(101 119 103 117)(102 118 104 120)(105 123 107 121)(106 122 108 124)(109 127 111 125)(110 126 112 128)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,13,107,44)(2,14,108,41)(3,15,105,42)(4,16,106,43)(5,66,93,40)(6,67,94,37)(7,68,95,38)(8,65,96,39)(9,103,48,76)(10,104,45,73)(11,101,46,74)(12,102,47,75)(17,109,56,82)(18,110,53,83)(19,111,54,84)(20,112,55,81)(21,113,52,78)(22,114,49,79)(23,115,50,80)(24,116,51,77)(25,119,64,92)(26,120,61,89)(27,117,62,90)(28,118,63,91)(29,123,60,88)(30,124,57,85)(31,121,58,86)(32,122,59,87)(33,125,71,98)(34,126,72,99)(35,127,69,100)(36,128,70,97), (1,125,101,96)(2,97,102,7)(3,127,103,94)(4,99,104,5)(6,105,100,76)(8,107,98,74)(9,65,42,33)(10,38,43,70)(11,67,44,35)(12,40,41,72)(13,69,46,37)(14,34,47,66)(15,71,48,39)(16,36,45,68)(17,60,50,27)(18,32,51,61)(19,58,52,25)(20,30,49,63)(21,64,54,31)(22,28,55,57)(23,62,56,29)(24,26,53,59)(73,93,106,126)(75,95,108,128)(77,91,110,124)(78,117,111,88)(79,89,112,122)(80,119,109,86)(81,87,114,120)(82,121,115,92)(83,85,116,118)(84,123,113,90), (1,86,3,88)(2,85,4,87)(5,114,7,116)(6,113,8,115)(9,27,11,25)(10,26,12,28)(13,31,15,29)(14,30,16,32)(17,35,19,33)(18,34,20,36)(21,39,23,37)(22,38,24,40)(41,57,43,59)(42,60,44,58)(45,61,47,63)(46,64,48,62)(49,68,51,66)(50,67,52,65)(53,72,55,70)(54,71,56,69)(73,89,75,91)(74,92,76,90)(77,93,79,95)(78,96,80,94)(81,97,83,99)(82,100,84,98)(101,119,103,117)(102,118,104,120)(105,123,107,121)(106,122,108,124)(109,127,111,125)(110,126,112,128)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,13,107,44)(2,14,108,41)(3,15,105,42)(4,16,106,43)(5,66,93,40)(6,67,94,37)(7,68,95,38)(8,65,96,39)(9,103,48,76)(10,104,45,73)(11,101,46,74)(12,102,47,75)(17,109,56,82)(18,110,53,83)(19,111,54,84)(20,112,55,81)(21,113,52,78)(22,114,49,79)(23,115,50,80)(24,116,51,77)(25,119,64,92)(26,120,61,89)(27,117,62,90)(28,118,63,91)(29,123,60,88)(30,124,57,85)(31,121,58,86)(32,122,59,87)(33,125,71,98)(34,126,72,99)(35,127,69,100)(36,128,70,97), (1,125,101,96)(2,97,102,7)(3,127,103,94)(4,99,104,5)(6,105,100,76)(8,107,98,74)(9,65,42,33)(10,38,43,70)(11,67,44,35)(12,40,41,72)(13,69,46,37)(14,34,47,66)(15,71,48,39)(16,36,45,68)(17,60,50,27)(18,32,51,61)(19,58,52,25)(20,30,49,63)(21,64,54,31)(22,28,55,57)(23,62,56,29)(24,26,53,59)(73,93,106,126)(75,95,108,128)(77,91,110,124)(78,117,111,88)(79,89,112,122)(80,119,109,86)(81,87,114,120)(82,121,115,92)(83,85,116,118)(84,123,113,90), (1,86,3,88)(2,85,4,87)(5,114,7,116)(6,113,8,115)(9,27,11,25)(10,26,12,28)(13,31,15,29)(14,30,16,32)(17,35,19,33)(18,34,20,36)(21,39,23,37)(22,38,24,40)(41,57,43,59)(42,60,44,58)(45,61,47,63)(46,64,48,62)(49,68,51,66)(50,67,52,65)(53,72,55,70)(54,71,56,69)(73,89,75,91)(74,92,76,90)(77,93,79,95)(78,96,80,94)(81,97,83,99)(82,100,84,98)(101,119,103,117)(102,118,104,120)(105,123,107,121)(106,122,108,124)(109,127,111,125)(110,126,112,128) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,13,107,44),(2,14,108,41),(3,15,105,42),(4,16,106,43),(5,66,93,40),(6,67,94,37),(7,68,95,38),(8,65,96,39),(9,103,48,76),(10,104,45,73),(11,101,46,74),(12,102,47,75),(17,109,56,82),(18,110,53,83),(19,111,54,84),(20,112,55,81),(21,113,52,78),(22,114,49,79),(23,115,50,80),(24,116,51,77),(25,119,64,92),(26,120,61,89),(27,117,62,90),(28,118,63,91),(29,123,60,88),(30,124,57,85),(31,121,58,86),(32,122,59,87),(33,125,71,98),(34,126,72,99),(35,127,69,100),(36,128,70,97)], [(1,125,101,96),(2,97,102,7),(3,127,103,94),(4,99,104,5),(6,105,100,76),(8,107,98,74),(9,65,42,33),(10,38,43,70),(11,67,44,35),(12,40,41,72),(13,69,46,37),(14,34,47,66),(15,71,48,39),(16,36,45,68),(17,60,50,27),(18,32,51,61),(19,58,52,25),(20,30,49,63),(21,64,54,31),(22,28,55,57),(23,62,56,29),(24,26,53,59),(73,93,106,126),(75,95,108,128),(77,91,110,124),(78,117,111,88),(79,89,112,122),(80,119,109,86),(81,87,114,120),(82,121,115,92),(83,85,116,118),(84,123,113,90)], [(1,86,3,88),(2,85,4,87),(5,114,7,116),(6,113,8,115),(9,27,11,25),(10,26,12,28),(13,31,15,29),(14,30,16,32),(17,35,19,33),(18,34,20,36),(21,39,23,37),(22,38,24,40),(41,57,43,59),(42,60,44,58),(45,61,47,63),(46,64,48,62),(49,68,51,66),(50,67,52,65),(53,72,55,70),(54,71,56,69),(73,89,75,91),(74,92,76,90),(77,93,79,95),(78,96,80,94),(81,97,83,99),(82,100,84,98),(101,119,103,117),(102,118,104,120),(105,123,107,121),(106,122,108,124),(109,127,111,125),(110,126,112,128)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4P4Q···4X
order12···244444···44···4
size11···122224···48···8

32 irreducible representations

dim11111111224
type+++++++++-
imageC1C2C2C2C2C2C2C2D4C4○D42- 1+4
kernelC42.191D4C425C4C23.63C23C23.78C23C23.81C23C23.83C23C2×C4×Q8C2×C42.C2C42C2×C4C22
# reps11422411484

Matrix representation of C42.191D4 in GL8(𝔽5)

40000000
01000000
00100000
00010000
00003021
00000313
00002120
00001302
,
30000000
03000000
00100000
00010000
00002200
00000300
00000033
00000002
,
04000000
40000000
00200000
00030000
00004140
00002104
00004014
00000434
,
40000000
04000000
00030000
00200000
00001041
00000121
00004140
00002104

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,2,1,0,0,0,0,0,3,1,3,0,0,0,0,2,1,2,0,0,0,0,0,1,3,0,2],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2],[0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,2,4,0,0,0,0,0,1,1,0,4,0,0,0,0,4,0,1,3,0,0,0,0,0,4,4,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,4,2,0,0,0,0,0,1,1,1,0,0,0,0,4,2,4,0,0,0,0,0,1,1,0,4] >;

C42.191D4 in GAP, Magma, Sage, TeX

C_4^2._{191}D_4
% in TeX

G:=Group("C4^2.191D4");
// GroupNames label

G:=SmallGroup(128,1366);
// by ID

G=gap.SmallGroup(128,1366);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,120,758,723,100,185,136]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽